

 Workflow framework

Benno Luthiger
Bachmattstr. 39
CH-8048 Zürich

benno.luthiger@id.ethz.ch

Version 1.0

Zurich, 26. July 2003

Title
max. 2 lines

Documentation
Application VIF

Workflow framework Table of Content
Version 1.0

 Page 2

Table of Content

Abstract 3

Credits 3

Licensing 3

1. Content of the workflow package 4
1.1. Interface State 4
1.2. Interface Transition 5
1.3. Interface WorkflowAware 5
1.4. Class Workflow 7
1.5. Class WorkflowAwareImpl 9
1.6. Class WorkflowException 11

2. Using the workflow packag 12

3. Example 13

Workflow framework Abstract
Version 1.0

 Page 3

Abstract

This document describes content and use of the workflow framework.

Credits

The workflow package org.hip.kernel.workflow is the Java implementation of the Python
workflow module itools created by Juan David Ibáñez Palomar (jdavid@itaapy.com).

Licensing

The workflow package is licensed under GNU Lesser General Public License (LGPL).

Workflow framework Content of the workflow package
Version 1.0

 Page 4

1. Content of the workflow package

The VIF workflow package consists of the interfaces State, Transition and WorkflowAware as
well as the classes Workflow, WorkflowAwareImpl and WorkflowException. The interfaces
State and Transition are implemented internally. Instances implementing the State interface can
be obtained calling WorkflowAwareImpl.getState().Instances implementing the Transition
interface can be obtained calling the State.getTransition(). Classes intended for taking part in a
workflow have to be made workflow aware, i.e. they have to implement the WorkflowAware interface.
However, because the functionality of a WorkflowAware object is implemented by
WorkflowAwareImpl, such an object simply can create an instance of WorkflowAwareImpl and
then delegate all calls to its WorkflowAware interface to this WorkflowAwareImpl instance.

1.1. Interface State
The State interface is used to describe a state. A State has transitions to other States.

Methods
addTransition

void addTransition(String inTransitionName, Transition inTransition)

Adds the transition with the specified name to the state instance.

Parameters: inTransitionName Name of the Transition added.
inTransition Transition added to the State.

getTransition

Transition getTransition(String inTransitionName)

Returns the transition with the specified name.

Parameters: inTransitionName Name of the transition to be returned.

Returns: the transition identified with the specified name.

Workflow framework Content of the workflow package
Version 1.0

 Page 5

1.2. Interface Transition

The Transition interface is used to describe transitions. Transitions come from one State and go to
another.

Methods
getStateFrom

String getStateFrom()

Returns the state the transition starts from.

Returns: the state the transition starts from.

getStateTo

String getStateTo()

Returns the state the transition is going to.

Returns: the state the transition is going to.

1.3. Interface WorkflowAware
The interface WorkflowAware has to be implemented by workflow aware objects.

Specific application semantics for states and transitions can be implemented as methods of the class
implementing this interface.

These methods get associated with the individual states and transitions by a simple naming scheme.
For example, if a Workflow has two states Private and Public, and a transition Publish that goes from
Private to Public, the following happens when the transition is executed:

1. if implemented, the method onLeave_Private is called (it is called each time the object
leaves the Private state)

2. if implemented, the method onTransition_Publish is called (it is called whenever this
transition is executed)

3. if implemented, the method onEnter_Public is called (it is called each time the object
enters the Public state)

Workflow framework Content of the workflow package
Version 1.0

 Page 6

Methods

enterWorkflow

void enterWorkflow(Workflow inWorkflow, Object[] inArgs)
throws WorkflowException

(Re-)Bind this object to the specified workflow. The Workflow must provide a default initial
State.

Parameters: inWorkflow The Workflow the workflow aware object has to be bound to.
inArgs Arguments passed down to all handlers called.

Throws: WorkflowException

enterWorkflow

void enterWorkflow(Workflow inWorkflow,
String inInitialStateName, Object[] inArgs)
throws WorkflowException

(Re-)Bind this object to the specified workflow. The inInitialStateName parameter is the
workflow State that should be taken on initially.

Parameters: inWorkflow The Workflow the workflow aware object has to be bound to.
inInitialStateName The name of the initial State.
inArgs Arguments passed down to all handlers called.

Throws: WorkflowException

doTransition

void doTransition(String inTransitionName, Object[] inArgs)
throws WorkflowException

Performs the transition with the specified name, changes the state of the object and runs any defined
state/transition handlers. Extra arguments are passed down to all handlers called.

Parameters: inTransitionName The transition to perform.
inArgs Arguments passed down to all handlers called.

Throws: WorkflowException

getStateName

String getStateName()

Returns the name of the current State.

Returns: the name of the current State

Workflow framework Content of the workflow package
Version 1.0

 Page 7

getState

State getState() throws WorkflowException

Returns the current State instance.

Returns: State the current State instance

Throws: WorkflowException

1.4. Class Workflow
The class workflow is used to describe a workflow. A workflow has states (one of them is the initial state),
and states have transitions that go to another state.

Constructors
public Workflow()

Construct a Workflow object.

Methods

setInitialStateName

public void setInitialStateName(String inInitialStateName)
throws WorkflowException

Sets the state with the specified name as default initial state.

Parameters: inInitialStateName The name of the initial state.

Throws: WorkflowException

getInitialStateName

public String getInitialStateName()

Returns the name of the initial state.

Returns: the name of the initial state

Workflow framework Content of the workflow package
Version 1.0

 Page 8

getState

public State getState(String inStateName) throws WorkflowException

Returns the State with the specified name.

Parameters: inStateName the name of the State to be returned

Returns: the State with the specified name

Throws: WorkflowException

addState

public void addState(String inStateName)

Adds a new State with the specified name.

Parameters: inStateName The name of the State to be added.

addTransition

public void addTransition(String inTransitionName,
String inStateFrom, String inStateTo)
throws WorkflowException

Adds a new Transition. The specified state names from and to respectively are the origin and
destination states of the transition.

Parameters: inTransitionName Name of the Transition to be added
inStateFrom Name of the State the Transition comes from
inStateTo Name of the State the Transition goes to

Throws: WorkflowException

Workflow framework Content of the workflow package
Version 1.0

 Page 9

1.5. Class WorkflowAwareImpl

The class WorkflowAwareImpl implements generic functionality which can be use by workflow
aware objects, i.e. objects implementing the interface WorkflowAware. These objects can delegate calls
to WorkflowAware methods to instances of this class.

Constructors
public WorkflowAwareImpl(Workflow inWorkflow,

Object[] inArgs,
WorkflowAware inCaller)
throws WorkflowException

Constructs a WorkflowAwareImpl object initialized with the specified Workflow object.

Parameters: inWorkflow The relevant Workflow.
inArgs Arguments passed down to all handlers called.
inCaller The object delegating the workflow aware behaviour.

Throws: WorkflowException

public WorkflowAwareImpl(Workflow inWorkflow,
String inInitialStateName,
Object[] inArgs,
WorkflowAware inCaller)
throws WorkflowException

Constructs a WorkflowAwareImpl object initialized with the specified Workflow object and the
specified initial state.

Parameters: inWorkflow The relevant Workflow.
inInitialStateName The name of the initial State.
inArgs Arguments passed down to all handlers called.
inCaller The object delegating the workflow aware behaviour.

Throws: WorkflowException

Workflow framework Content of the workflow package
Version 1.0

 Page 10

Methods

enterWorkflow

public void enterWorkflow(Workflow inWorkflow, Object[] inArgs,
inCaller WorkflowAware)
throws WorkflowException

(Re-)Bind this object to the specified workflow. The Workflow must provide a default initial
State.

Parameters: inWorkflow The Workflow the workflow aware object has to be bound to.
inArgs Arguments passed down to all handlers called.
inCaller The object delegating the workflow aware behaviour.

Throws: WorkflowException

enterWorkflow

public void enterWorkflow(Workflow inWorkflow,
String inInitialStateName, Object[] inArgs,
inCaller WorkflowAware)
throws WorkflowException

(Re-)Bind this object to the specified workflow. The inInitialStateName parameter is the
workflow State that should be taken on initially.

Parameters: inWorkflow The Workflow the workflow aware object has to be bound to.
inInitialStateName The name of the initial State.
inArgs Arguments passed down to all handlers called.
inCaller The object delegating the workflow aware behaviour.

Throws: WorkflowException

doTransition

public void doTransition(String inTransitionName, Object[] inArgs,
inCaller WorkflowAware)
throws WorkflowException

Performs the transition with the specified name, changes the state of the object and runs any defined
state/transition handlers. Extra arguments are passed down to all handlers called.

Parameters: inTransitionName The transition to perform.
inArgs Arguments passed down to all handlers called.
inCaller The object delegating the workflow aware behaviour.

Throws: WorkflowException

Workflow framework Content of the workflow package
Version 1.0

 Page 11

getStateName

public String getStateName()

Returns the name of the current State.

Returns: the name of the current State

getState

public State getState() throws WorkflowException

Returns the current State instance.

Returns: State the current State instance

Throws: WorkflowException

1.6. Class WorkflowException
Exception to signal problems thrown during workflow handling.

Constructors
public WorkflowException()

Constructs a WorkflowException object.

public WorkflowException(String inSimpleMessage)

Constructs a WorkflowException object with the specified message.

Parameters: inSimpleMessage The exception message.

Workflow framework Using the workflow packag
Version 1.0

 Page 12

2. Using the workflow packag

A document that is intended to take part in a workflow has to implement the interface WorkflowAware.
This means, this class has to implement the workflow methods enterWorkflow(),
doTransition(), getStateName() and getState(). However, the work is simplified by using
the class WorkflowAwareImpl. The workflow aware document can create an instance of
WorkflowAwareImpl and then delegate all calls to the workflow methods to this instance
incorporated.

To initialize an instance of WorkflowAwareImpl, the workflow aware document has to create an
instance of Workflow, which then can be entered as initializing parameter to the constructor of
WorkflowAwareImpl.

This is the moment the workflow aware document can define the workflow it takes part. A
Workflow is defined by adding various states and transitions to get from one state to the other. After
defining the Workflow and handing it over to WorkflowAwareImpl, all calls of the workflow
methods can safely delegated to WorkflowAwareImpl.

The only thing left to do is to implement the functionality that has to be carried out when state
transition occurs. This is done by implementing methods using a specific naming scheme. For example, if
a Workflow has two states Private and Public, and a transition Publish that goes from Private to Public,
the following happens when the transition is executed:

1. if implemented, the method onLeave_Private() is called (it is called each time the object
leaves the Private state)

2. if implemented, the method onTransition_Publish() is called (it is called whenever
this transition is executed)

3. if implemented, the method onEnter_Public() is called (it is called each time the object
enters the Public state)

Therefore, it the application has something to do if the document leaves the Private state, you can
implement this behaviour in a method of the document named onLeave_Private().

+enterWorkflow()
+doTransition()
+getStateName() : String
+getState() : State

workflow::Document

WorkflowAware +enterWorkflow()
+doTransition()
+getStateName() : String
+getState() : State

workflow::WorkflowAwareImpl

-workflowAware

1 *

+setInitialStateName()
+getInitialStateName() : String
+getState() : State
+addState()
+addTransition()

workflow::Workflow

-workflow

1 *

Workflow framework Example
Version 1.0

 Page 13

3. Example

The example shows the code of a Document with a Workflow consisting of two States Private and
Public and one Transition Publish.

import org.hip.kernel.workflow.*

public class Document implements WorkflowAware {
 //constants
1) public final static String STATE_PRIVATE = "Private";
 public final static String STATE_PUBLIC = "Public";
 public final static String TRANS_PUBLISH = "Publish";

 //instance variables
2) WorkflowAwareImpl workflowAware;

 public Document() throws WorkflowException {
 super();
3) workflowAware = new WorkflowAwareImpl(createWorkflow(),
 new Object[] {"Just created."}, this);
 }

4) private Workflow createWorkflow() throws WorkflowException {
 Workflow lWorkflow = new Workflow();
 lWorkflow.addState(STATE_PRIVATE);
 lWorkflow.addState(STATE_PUBLIC);
 lWorkflow.addTransition(TRANS_PUBLISH, STATE_PRIVATE, STATE_PUBLIC);
 lWorkflow.setInitialStateName(STATE_PRIVATE);
 return lWorkflow;
 }

5) public void doTransition(String inTransitionName, Object[] inArgs)
 throws WorkflowException {
 workflowAware.doTransition(inTransitionName, inArgs, this);
 }

 public void enterWorkflow(Workflow inWorkflow, Object[] inArgs)
 throws WorkflowException {
 workflowAware.enterWorkflow(inWorkflow, inArgs, this);
 }

 public void enterWorkflow(Workflow inWorkflow, String inInitialStateName,
 Object[] inArgs) throws WorkflowException {
 workflowAware.enterWorkflow(inWorkflow, inInitialStateName,
 inArgs, this);
 }

 public String getStateName() {
 return workflowAware.getStateName();
 }

 public State getState() throws WorkflowException {
 return workflowAware.getState();

Workflow framework Example
Version 1.0

 Page 14

 }

6) public void onEnter_Private(String inMessage) {
 System.out.println("onEnter_Private: " + inMessage);
 }

 public void onLeave_Private(String inMessage) {
 System.out.println("onLeave_Private: " + inMessage);
 }

 public void onEnter_Public(String inMessage) {
 System.out.println("onEnter_Public: " + inMessage);
 }

 public void onLeave_Public(String inMessage) {
 System.out.println("onLeave_Public: " + inMessage);
 }

 public void onTransition_Publish(String inMessage) {
 System.out.println("onTransition_Publish: " + inMessage);
 }

1) Define the constants for the two states and the transition.

2) Define the Document’s instance variable for the instance of WorkflowAwareImpl the
workflow aware object is delegating its workflow behaviour.

3) Initialize the document’s WorkflowAwareImpl by creating the document’s workflow.

4) The document’s workflow is set up in a private method. The states and transition are added to the
Workflow and the initial state is set.

5) All workflow aware methods are implemented simply by passing the call to
WorkflowAwareImpl.

6) The functionality carried out when state transition occurs is implemented. Be aware that the
method names correspond to the values of the state and transition constants. Be sure that the
method signature is the same for all methods.

import org.hip.kernel.workflow.*

WorkflowAware lDocument = new Document();
lDocument.doTransition(Document.TRANS_PUBLISH,

 new Object[] {"Publish this document."});
lDocument.getStateName();

The code above shows how to use the workflow. First the workflow aware document is created. Then
the document is published by calling the transition with the name of the Publish transition as parameter. In
the last step the name of the document’s actual state is queried.

